
Book Solution সূচক ও লগারিদম প্রথম অংশ

উদাহরণ ১। মান নির্ণয় কর : (ক) উদাহরণ ২। সরল কর : (ক) 54 × 8 × 16 (₹) <u>3·2</u>ⁿ $(a^{p})^{q-r} \cdot (a^{q})^{r-p} (a^{r})^{p-q} = 1$ ডদাহরণ ৩। দেখাও $7^{\frac{3}{4}} \cdot 7^{\frac{1}{2}}$ (16) $(16)^{\frac{3}{4}} \div (16)^{\frac{1}{2}}$ । ৪। সরল কর : $(12)^{1/2} \times \sqrt[3]{54}$ । সরল কর : (ক)

Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

Book Solution

Book Solution

সূচক ও লগারিদম

11. 25 (313 (2013) 3 15 0 X 10 1 - 610 - 10 (312) 326 and 32 a mo - o the Brend (ster 6:2 -> (1-5) alol 1. $a^m \times a^n = a^{m+n}$ 602 -> (9,10,11,12) $2 \cdot \frac{a^m}{a^n} = a^{m-n} [m > n]$ 5:6-7 (13-17) 3. $\frac{\alpha^m}{\alpha^n} = \frac{1}{\alpha^{n-m}} \left[n \right] m$ 6:6-7 (19-22) र (कि ध्या हर / हास्रात चर्त्या हर $y. (ab)^n = a^n b^n$ $5 \cdot \left(\frac{a}{b}\right)^n = -\frac{a^n}{n}$ 6. $a^{\circ} = 1$ [$a \neq 0$] $\langle a^{1} = a, 10^{1} \rangle$ or $a^{\circ} = 0$ [$a \neq 0$] $a^{1} = a, 10^{1} \rangle$ $7 \cdot a^{-n} = \frac{1}{a^n} \left[a \neq 0 \right] Ros tehrs drag grag tetrs de <math>\xi$ 8. (am)n - amn 9. $a^{\chi} = a^{\chi} - 2\overline{a}, \chi = \chi [a > 0, 0 \neq 1]$ $10 \cdot a^{\chi} = b^{\chi} \overline{\chi}(a), a = b [a > 0, b > 0, \chi \neq 0]$

Book Solution

11. 35° ENTA (autor 3, or: ax 10" [1, 2a/ 10 (39 mE) $12 \cdot \sqrt{a} = a^{\frac{1}{2}}, \sqrt[3]{a} = a^{\frac{1}{3}}, \sqrt[m]{a} = a^{\frac{1}{m}}, (\sqrt[m]{a})^n = a^{\frac{n}{m}}$ Note: VhB 2] आत क्रिकेट कृत् => 076 31735. 2) Thene Tr brand करना देर => 不不可了 (57月日前) 6) - अआद्रादिगत कुर =7x/0/0- (मुन आत हुरेन केन्ने) 8 - अन्नल कव => तांड द्वारिक दूधरे जाहित हिंदी कवर . छ अआमित हार बिर्तर कर . => x/0/0 - 93 317 83 83 013 243 010 24 (2) (0) x (= Ter.

Book Solution

2 6.2 $a) - \frac{5^2}{5^3}$ Mr. B 37131: 52 53 = 52-3 = 5⁻¹ $=\frac{1}{5(Amo;)}$ Que antar: $\left(\frac{2}{3}\right)^5 \times \left(\frac{2}{3}\right)^{-5}$ $=\left(\frac{2}{3}\right)^{5-5}$ $=\left(\frac{2}{3}\right)^{0}$ = 1 (Am:)

Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

Book Solution

সূচক ও লগারিদম

602 5 × 125
 25 × 125
 $= \frac{5^{4} \times 2^{3} \times 2^{4}}{2^{5} \times 5^{3}}$ 54×23+4 25×53 $= \frac{54 \times 27}{2^5 \times 5^3}$ = 27-5 × 54-3 $= 2^2 \times 5^1$ $= 4 \times 5$ = 20 (Am!)

Book Solution

$(2) = \frac{3 \cdot 2^n - 4 \cdot 2^{n-2}}{2}$	
n - n - 1	Pin Same
	(10) 1 4 H 4
$3 \cdot 2^n - 2^2 \cdot 2^{n-2}$	K
$=$ $2^{n} - 2^{n-1}$ $3^{n} - 1$ $3^{n} - 3^{n} - 3^$	12-41 0 = 11
$= 3 \cdot 2^n - 2^{2+n-2}$	- 0 BA-12F
$2^{n} - 2^{n-1}$	en = R
3.27-27	N -
$=$ $2^{n} - 2^{n} \times 2^{-1}$	
-h(21)	= K.H.S
$= \frac{2^{n}(3-1)}{n} (bound \geq)$	
$2^{n}(1-2^{-1})$	
3-1	8:5
$=$ $\frac{1}{1-1}$	1 2 E C
2	2 L. Pro
- 2	1 + 2 =
	2
2	NFE
= 474)	(fm)
(m.)	

Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

Book Solution

L.H.s: $(a^{p})^{q} - \pi$. $(a^{q})^{\pi} - P$. $(a^{\pi})^{p} - q$. $= a^{PQ} - \pi P \cdot a^{V\pi} - PQ \cdot a^{\pi} P - \sqrt{\pi}$ = aPX-172P + 912- PX + 12P - 912 $= a^0$ = 1 = R.H.S (showed) 6:8 74.72 $\frac{3}{4} + \frac{1}{2}$ = 7 4 Am'

Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

Book Solution

সূচক ও লগারিদম

@ (16) 4 · (16) 2 2 = 16 16 24 2 10 3 51) $10\frac{1}{3}\times\frac{3}{4}$ = $10\frac{1}{2}$ Ĺ = 10

Book Solution

 $\frac{1}{(12)^{\frac{1}{2}}} \times \sqrt[3]{54}$ $\frac{1}{(12)^{\frac{1}{2}}} \times (54)^{\frac{1}{3}}$ $\frac{1}{\left(2^2\times3\right)^{\frac{1}{2}}}\times\left(3^3\times2\right)^{\frac{1}{3}}$ $\frac{1}{\left(2^{2}\right)^{\frac{1}{2}}\times3^{\frac{1}{2}}}\times(3^{3})^{\frac{1}{3}}\cdot2^{\frac{1}{3}}$ $\frac{1}{2 \cdot 3 \cdot 3 \cdot 2 \cdot 3}$ $\frac{1}{2^{\frac{1}{3}}} \times \frac{3^{1}}{3^{\frac{1}{2}}}$ 31 91-34

Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

Book Solution

সূচক ও লগারিদম

 $(-3)^3 \times \left(-\frac{1}{2}\right)^2$ $= (-3)(-3)(-3) \times (-\frac{1}{2})(-\frac{1}{2})$ $= -27 \times \frac{1}{4} = -27 \times \frac{1}{4}$ $=-\frac{27}{4}$ (Am!) 6.6 $: y^{\chi + 1} = 32$ $Tr.(2^2)^{\chi+1} = 2^5$ $Tr, 2^{2\chi+2} = 2^5$ Tr. 2X+2=5 Tr, 2x = 3 $\pi x, \chi = \frac{3}{2} (Am!)$

Book Solution

সূচক ও লগারিদম

53.8 33.35 6 24.125 33+5 53.23 24.53 36 2³.5³ 2⁴.5³ 38 23-4.53-3 $= 3^{8-6}$ = 3^{2} 2.50 5 9 (Am !) 1 2.1 $=\frac{1}{2}(Am)$

Book Solution

সূচক ও লগারিদম

72.37 73-7-3 3-3-4 8 (0) $7^{3+(-3)}$ $3^{1+(-4)}$ 723.7 72 73-3 31-4 73 -.7 3 7 2+1 7 3 7 2 $=\frac{70}{3^{-3}}$ 72 73 33 - - 2 27 6-3 = 7 = 1 × $= 7 \frac{3}{62}$ = 27(Am!) =7 = V7 (Am:)

Book Solution

201+36) 6 C, 2 Б 3 3 b 11 5+2 (2b+3a) ab 7 10 7 2b+30 10 ab ab 2b+30 10

Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

Book Solution

সূচক ও লগারিদম

9 02 0) b -2 b 02 02 ay -2 a⁸ 64

Book Solution

সূচক ও লগারিদম

 $\frac{2^{n+q}-q\cdot 2^{n+1}}{2^{n+2}-2} = \frac{3^{n}}{(3^{m})^{m-1}} \cdot \frac{3^{m+1}}{(3^{m-1})^{m+1}}$ $\frac{2^{n} \cdot 2^{y} - y \cdot 2^{n} \cdot 2}{2^{n+2-1}} = \frac{3^{m+1}}{3^{m^{2}-m}} \stackrel{o}{\to} \frac{(3^{2})^{m+1}}{3^{m^{2}-1}}$ $2^{n+2-1} = 3^{m^2-m} \cdot 3^{m^2-1}$ $= \frac{2^n (2^u - 8)}{2^{n+1}} = \frac{3^{m+1} \cdot 3^{2m+2}}{3^{m^2-m} \cdot 3^{m^2-1}}$ $\frac{2^{n}(16-8)}{2^{n}\cdot 2} = 3^{m+1}-m^{2}+m$ $= 3^{m+1}-m^{2}+m$ $= 3^{2m+2}-m^{2}+1$ $= 3^{2m+1-m^2} - \frac{3^{2m+3-m^2}}{\sqrt{3}^{2m+3-m^2}}$ 84 $= 3^{2m+1-m^2-2m-3+m^2}$ = 3-2 $=\frac{1}{3^2}$ = -9

Book Solution

সূচক ও লগারিদম

MAUR 20 L.H.S : <u>4ⁿ−1</u> 2ⁿ−1 $=\frac{(2^n)^2-1}{2^n-1}$ $= (2^{n}+1)(2^{n}/1) - R - 9 - R + 1 + 9$ (2n/1) = 2"+1 = R.H.S (Przoved) DR L.H.S; 2P+1.32P-4.5P+4.64 6P.104+2.15P $\frac{2^{P+1} \cdot 3^{2P-9} \cdot 5^{P+9} \cdot (2\times3)^{9}}{(2\times3)^{P} \cdot (2\times5)^{9+2} \cdot (3\times5)^{P}}$ $=\frac{2^{P+1} \cdot 3^{2P-9} \cdot 5^{P+9} \cdot 2^{9} \cdot 3^{9}}{2^{P} \cdot 3^{P} \cdot 2^{9+2} \cdot 5^{9+2} \cdot 3^{P} \cdot 5^{P}}$

Book Solution

সূচক ও লগারিদম

 $= \frac{2^{P+1+9} \cdot 3^{2P-8+8} \cdot 5^{P+8}}{2^{P+9+2} \cdot 3^{P+P} \cdot 5^{9+2+P}}$ $= 2^{P+1+9}, 3^{2P}, 5^{P+9}$ 2P+9+2, 32P. 5P+9 = 9P+1+X-P-X-2 3P-2P P+X-P-X-2 = 2 . 3 . 5 - 2 $=\frac{1}{2}\cdot 1\cdot \frac{1}{5^2}$ $=\frac{1}{2}, 1.\frac{1}{25}$ = 1 921, 84201.9 = R. H. Sxe). P+92. P-92. 1+90 (axe) (Proved)) (exe)

Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

Book Solution

 $\frac{d}{dm}$ $\binom{d}{dm}$ $\binom{d}{dm}$ $\binom{d}{dm}$ $\binom{d}{dm}$ $\binom{d}{dm}$ $= (a^{lm})^n \cdot (a^{m-n})^l \cdot (a^{n-l})^m$ = anl-mn of ml-nl of mn-mldo $= \alpha^{nk} - mn + mk - nk + pn - pot = 0$ C(0-b)+c(b-c)+b(c-c)= R.H.S (Przoved) $\frac{a^{p+q}}{a^{2r}} \times \frac{a^{q+r}}{a^{2p}} \times \frac{a^{r+r}}{a^{2q}}$ = 0 P+9-212 × 0 +12-2P × 0 2+P-22 $= 0^{P+q} - 2R + q + R - 2P + R + P - 2q$ 12P+2N-2/2+2/2-2/P-2/ (Proved) ZR.H.C

Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

Book Solution

 \mathcal{O} L.H.S: $(\frac{x^{a}}{x^{b}})^{ab}$. $(\frac{x^{b}}{c})^{bc}$. $(\frac{x^{c}}{x^{a}})^{ca}$ $= (\chi^{a-b}) \overline{ab} \cdot (\chi^{b-e}) \overline{be} \cdot (\chi^{e-a}) \overline{ca}$ $= \chi \frac{a-b}{ab} + \frac{b-c}{x-bc} + \frac{c-a}{x-c}$ $= \chi \frac{a-b}{ab} + \frac{b-e}{be} + \frac{e-a}{ca}$ $= \chi \frac{c(a-b)+a(b-e)+b(e-a)}{abe}$ = $\chi \frac{a(a-b)+a(b-e)+b(e-a)}{abe}$ = $\chi \frac{a(a-b)+a(b-a)+b(e-a)}{abe}$ = x - abe (bsvor) 2.11.9 $7 = x^{0} 9 + 50$ $x = 1 \qquad 700 \qquad x = 90 \qquad x = 90$ ZR.H.S. 90-51+Pox 510-Pt90 (Proved) Pot see Ptgo

Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

Book Solution

 $ble L.H.S: \left(\frac{x^{a}}{x^{b}}\right)^{a+b} \left(\frac{x^{b}}{x^{c}}\right)^{b+c} \left(\frac{x^{c}}{x^{c}}\right)^{b+c}$ $= (x^{a-b})^{a+b} \cdot (x^{b-c})^{b+c} \cdot (x^{c-a})$ $= x^{a^2-b^2} \cdot x^{b^2-c^2} \cdot x^{c^2-a^2}$ $= \chi^{a^2-b^2+b^2-c^2+c^2}-a^2$ = x (Proved) = R.H.S

Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

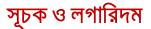
Book Solution

11 11 [] 11 29/L·H·S xP2+xP-Prz-Ph2-82+872+82-P8-11 92+972 0-9.1P+9-17 PT-22+217 2- Pq-122+P12 00 - 21+ V [21- VX) X ×x 2+ 21- PA-27-122+ Prz YX 22 + PA J+12-6 122- 972-P2+ X XP 2 17-P 12+6-171 90 R

Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

Book Solution

ONB QX = b Tr, (CZ)X=h Tr, (64) ZX = 6 Tr, 6xyz = 61 71, XYZ = 1 $\therefore L \cdot H \cdot S = R \cdot H \cdot S$ (Showed) 20 4×=8 Tr, 92X = 93 Tr. 2X = 3 $\forall r, \chi = \frac{3}{2}$ (Am:)


Helped By : Laisa Khan (Student of Salauddin Adorsho High School)

Book Solution

সূচক ও লগারিদম

 $20 \quad 2^{2\chi+1} = 128$ Tr. 22x+1 = 97 Tr, 2x+1 = 7 $Tr, 2\chi = 6$ $\forall r, \chi = -\frac{6}{2}$ $Tr, \chi = 3 (Am!)$ $\frac{23}{\sqrt{3}} \left(\sqrt{3} \right)^{\chi+1} = \left(\sqrt{3} \right)^{2\chi-1} 2 \cdot 1 \cdot 1 = 2 \cdot 1 \cdot 1$ $\pi (3\frac{1}{2})^{\chi+1} = (3\frac{1}{3})^{2\chi-1}$ $Tr, 3\frac{\chi+1}{9} = 3\frac{2\chi-1}{3}$ $\pi x, \frac{\chi + 1}{\rho} = \frac{2\chi - 1}{3}$ 7x, 3x + 3 = 4x - 2 $\pi, 3\chi - 4\chi = -2 - 3$ 7, -7 = -5T. x = 5 (Am!)

Book Solution

$$22 \quad 2^{x} + 2^{1-x} = 3$$

$$\pi, 2^{x} + \frac{2}{2^{x}} = 3$$

$$\pi, 0 + \frac{2}{0} = 3 \quad [2x = 0]$$

$$\pi, \frac{0^{2}+2}{0} = 3$$

$$\pi, 0^{2} + 2 = 30$$

$$\pi, 0^{2} - 30 + 2 = 0$$

$$\pi, 0^{2} - 20 - 0 + 2 = 0$$

$$\pi, 0 \quad (0 - 2) - 1 \quad (0 - 2) = 0$$

$$\pi, 0 \quad (0 - 2) - 1 \quad (0 - 2) = 0$$

$$\pi, 0 = 2 \qquad \qquad 0 - 1 = 0$$

$$\pi, 0 = 2 \qquad \qquad \pi, 0 = 1$$

$$\pi, 2^{x} = 0 \qquad \qquad \pi, 0 = 1$$

$$\pi, 2^{x} = 0 \qquad \qquad \pi, 0 = 1$$

$$\pi, 2^{x} = 1 \qquad \qquad \pi, x = 0$$

$$\pi + x = 1 \qquad \qquad \pi, x = 0$$

$$\pi + x = 1 \qquad \qquad \pi, x = 0$$